Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Curr Mol Med ; 2023 Apr 17.
Article in English | MEDLINE | ID: covidwho-2292251

ABSTRACT

In the present scenario, the SARS-CoV-2 virus has imposed enormous damage on human survival and the global financial system. It has been estimated that around 111 million people all around the world have been infected, and about 2.47 million people died due to this pandemic. The major symptoms were sneezing, coughing, cold, difficulty breathing, pneumonia, and multi-organ failure associated 1with SARS-CoV-2. Currently, two key problems, namely insufficient attempts to develop drugs against SARSCoV-2 and the lack of any biological regulating process, are mostly responsible for the havoc caused by this virus. Henceforth, developing a few novel drugs is urgently required to cure this pandemic. It has been noticed that the pathogenesis of COVID-19 is caused by two main events: infection and immune deficiency, that occur during the pathological process. Antiviral medication can treat both the virus and the host cells. Therefore, in the present review, the major approaches for the treatment have been divided into "target virus" and "target host" groups. These two mechanisms primarily rely on drug repositioning, novel approaches, and possible targets. Initially, we discussed the traditional drugs per the physicians' recommendations. Moreover, such therapeutics have no potential to fight against COVID-19. After that, detailed investigation and analysis were conducted to find some novel vaccines and monoclonal antibodies and conduct a few clinical trials to check their effectiveness against SARSCoV-2 and mutant strains. Additionally, this study presents the most successful methods for its treatment, including combinatorial therapy. Nanotechnology was studied to build efficient nanocarriers to overcome the traditional constraints of antiviral and biological therapies.

2.
Comput Struct Biotechnol J ; 19: 467-476, 2021.
Article in English | MEDLINE | ID: covidwho-2289015

ABSTRACT

Effective treatment or vaccine is not yet available for combating SARS coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic. Recent studies showed that two drugs, Camostat and Nafamostat, might be repurposed to treat COVID-19 by inhibiting human TMPRSS2 required for proteolytic activation of viral spike (S) glycoprotein. However, their molecular mechanisms of pharmacological action remain unclear. Here, we perform molecular dynamics simulations to investigate their native binding sites on TMPRSS2. We revealed that both drugs could spontaneously and stably bind to the TMPRSS2 catalytic center, and thereby inhibit its proteolytic processing of the S protein. Also, we found that Nafamostat is more specific than Camostat for binding to the catalytic center, consistent with reported observation that Nafamostat blocks the SARS-CoV-2 infection at a lower concentration. Thus, this study provides mechanistic insights into the Camostat and Nafamostat inhibition of the SARS-CoV-2 infection, and offers useful information for COVID-19 drug development.

3.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(3):345-345, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2034497

ABSTRACT

Since the outbreak of the new crown pneumonia, the new coronavirus (SARSCoV-2) has been mutating continuously, and it has now become prevalent in more than 200 countries. The cumulative number of confirmed cases in the world has exceeded 460 million, and the number of deaths has exceeded 6 million. The rapid mutation of SARS-CoV-2 highlights the importance of preventive and therapeutic drugs, however, effective therapeutic drugs for new coronary pneumonia are still very scarce. It is still the common goal of scientists from all over the world to develop a safe and effective drug for the treatment of new coronary pneumonia that can inhibit the infection of multiple SARS-CoV-2 mutant strains.

4.
Zhongguo Bingyuan Shengwuxue Zazhi / Journal of Pathogen Biology ; 15(4):458-461, 2020.
Article in Chinese | GIM | ID: covidwho-1994548

ABSTRACT

Objectives: To investigate pathogenic bacteria, their drug resistance, and changes in levels of cytokines in patients with a puerperal infection after a Cesarean section.

5.
J Biol Chem ; 298(3): 101658, 2022 03.
Article in English | MEDLINE | ID: covidwho-1654686

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Subject(s)
Aminoquinolines , Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , SARS-CoV-2 , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Virus Internalization/drug effects
6.
Journal of Jiangsu University Medicine Edition ; 31(4):350-355, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-1558950

ABSTRACT

Objective: To explore the pharmacological mechanism of Xuanbai Qingfei Jiedu Decoction in the treatment of coronavirus disease 2019 (COVID-19) on account of network pharmacology.

7.
ChemMedChem ; 16(9): 1403-1419, 2021 05 06.
Article in English | MEDLINE | ID: covidwho-1064335

ABSTRACT

Nucleoside and nucleotide analogues are structurally similar antimetabolites and are promising small-molecule chemotherapeutic agents against various infectious DNA and RNA viruses. To date, these analogues have not been documented in-depth as anti-human immunodeficiency virus (HIV) and anti-hepatitis virus agents, these are at various stages of testing ranging from pre-clinical, to those withdrawn from trials, or those that are approved as drugs. Hence, in this review, the importance of these analogues in tackling HIV and hepatitis virus infections is discussed with a focus on the viral genome and the mechanism of action of these analogues, both in a mutually exclusive manner and their role in HIV/hepatitis coinfection. This review encompasses nucleoside and nucleotide analogues from 1987 onwards, starting with the first nucleoside analogue, zidovudine, and going on to those in current clinical trials and even the drugs that have been withdrawn. This review also sheds light on the prospects of these nucleoside analogues in clinical trials as a treatment option for the COVID-19 pandemic.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Hepatitis, Viral, Human/drug therapy , Nucleosides/therapeutic use , Nucleotides/therapeutic use , COVID-19/epidemiology , Clinical Trials as Topic , Drug Repositioning , HIV/drug effects , HIV/enzymology , HIV Reverse Transcriptase/antagonists & inhibitors , Hepatitis Viruses/drug effects , Hepatitis Viruses/enzymology , Humans , Pandemics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Reverse Transcriptase Inhibitors/therapeutic use , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
8.
Am J Cancer Res ; 10(8): 2535-2545, 2020.
Article in English | MEDLINE | ID: covidwho-754993

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or 2019 novel coronavirus (2019-nCoV), took tens of thousands of lives and caused tremendous economic losses. The main protease (Mpro) of SARS-CoV-2 is a potential target for treatment of COVID-19 due to its critical role in maturation of viral proteins and subsequent viral replication. Conceptually and technically, targeting therapy against Mpro is similar to target therapy to treat cancer. Previous studies show that GC376, a broad-spectrum dipeptidyl Mpro inhibitor, efficiently blocks the proliferation of many animal and human coronaviruses including SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), porcine epidemic diarrhea virus (PEDV), and feline infectious peritonitis virus (FIPV). Due to the conservation of structure and catalytic mechanism of coronavirus main protease, repurposition of GC376 against SARS-CoV-2 may be an effective way for the treatment of COVID-19 in humans. To validate this conjecture, the binding affinity and IC50 value of Mpro with GC376 was determined by isothermal titration calorimetry (ITC) and fluorescence resonance energy transfer (FRET) assay, respectively. The results showed that GC376 binds to SARS-CoV-2 Mpro tightly (KD = 1.6 µM) and efficiently inhibit its proteolytic activity (IC50 = 0.89 µM). We also elucidate the high-resolution structure of dimeric SARS-CoV-2 Mpro in complex with GC376. The cocrystal structure showed that GC376 and the catalytic Cys145 of Mpro covalently linked through forming a hemithioacetal group and releasing a sulfonic acid group. Because GC376 is already known as a broad-spectrum antiviral medication and successfully used in animal, it will be a suitable candidate for anti-COVID-19 treatment.

9.
J Biol Chem ; 295(20): 6785-6797, 2020 05 15.
Article in English | MEDLINE | ID: covidwho-52576

ABSTRACT

Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Virus Replication/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Betacoronavirus/physiology , Models, Molecular , SARS-CoV-2 , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL